Attenuation of miR-34a protects cardiomyocytes against hypoxic stress through maintenance of glycolysis

نویسندگان

  • Ying Zhang
  • Gang Liu
  • Xiaogang Gao
چکیده

MiRNAs are a class of endogenous, short, single-stranded, non-coding RNAs, which are tightly linked to cardiac disorders such as myocardial ischemia/reperfusion (I/R) injury. MiR-34a is known to be involved in the hypoxia-induced cardiomyocytes apoptosis. However, the molecular mechanisms are unclear. In the present study, we demonstrate that under low glucose supply, rat cardiomyocytes are susceptible to hypoxia. Under short-time hypoxia, cellular glucose uptake and lactate product are induced but under long-time hypoxia, the cellular glucose metabolism is suppressed. Interestingly, an adaptive up-regulation of miR-34a by long-time hypoxia was observed both in vitro and in vivo, leading to suppression of glycolysis in cardiomyocytes. We identified lactate dehydrogenase-A (LDHA) as a direct target of miR-34a, which binds to the 3'-UTR region of LDHA mRNA in cardiomyocytes. Moreover, inhibition of miR-34a attenuated hypoxia-induced cardiomyocytes dysfunction through restoration of glycolysis. The present study illustrates roles of miR-34a in the hypoxia-induced cardiomyocytes dysfunction and proposes restoration of glycolysis of dysfunctional cardiomyocytes by inhibiting miR-34a during I/R might be an effectively therapeutic approach against I/R injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gallic acid protects the liver in rats against injuries induced by transient ischemia-reperfusion through regulating microRNAs expressions

Objective(s): Gallic acid (GA) is a highly effective antioxidant, which its beneficial effects are well known, but its impact on expression of microRNAs (miRs) following hepatic ischemia-reperfusion (I/R) is not well recognized. Therefore, the current research was designed to specify the beneficial effect of GA on miRs (122 and 34a), liver functional tests, and histopathological alterations bey...

متن کامل

Portulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis

Abstract  Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...

متن کامل

Trans-chalcone enhances insulin sensitivity through the miR-34a/SIRT1 pathway

Objective(s): Trans-chalcone as the parent member of the chalcone series reduces circulating levels of insulin and glucose. However, the cellular mechanism of these effects is poorly understood. Sirtuin 1 (SIRT1) as a direct target of miR-34a controls homeostasis of glucose, and also improves insulin sensitivity. Therefore, the present study for the first time investigated the influence of tran...

متن کامل

Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation injury through AMPK/eNOS/PGC-1α signaling pathway.

OBJECTIVE AMP-activated protein kinase (AMPK) is an important regulator of multiple cellular pathways in the setting of energetic stress. Whether AMPK plays a critical role in hypoxic preconditioning (HPC), protecting cardiomyocytes against hypoxia reoxygenation (H/R) injury remains uncertain. METHODS H9c2 cells were preconditioned by exposing to 10 min of hypoxia and 30 min of reoxygenation....

متن کامل

The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer.

Lactate dehydrogenase A (LDHA) is involved in a variety of cancers. The purpose of this study was to investigate the expression, prognostic roles and function of LDHA in breast cancer. We found that LDHA was upregulated in both breast cancer cell lines and clinical specimens using quantitative real-time PCR (qRT-PCR). Immunohistochemistry (IHC) analysis of tissue microarrays (TMAs) showed that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017